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ABSTRACT

The SchrSdinger equation for the ground state of the two-electron

atom is examined in detai I and a technique is introduced by means of

which an analytic solution may be realized. The technique, which may

be called a partial series expansion method, consists of assuming a

series form for the wavefunction in powers of the inter-electron

separation with coefficients which are functions of two variables and

of determining the coefficients so that a satisfactory solution of the

SchrSdinger equation results. The coefficients are related by first-

order differential recursion relations which may be integrated

explicitly. The method is not complete because the initial co-

efficient_ independent of the inter-electron separation, is un-

determined. The extension of the method to the hydrogen molecule

and the two-electron atom in the presence of a uniform electric field

is also considered° Two model atomic systems, the Hooke's law model

and the delta-function model, for the two-electron atom are also

discussed and it is shown that these systems, which are solvable

through first order in a perturbation series, yield information about

the difficulties which arise in the helium atom.
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I° INTRODUCTION

For over forty years_ ever since the birth of modern quantum

11

mechanics_ the analytical solution of the Schrodinger equation for

the two-electron atom has eluded those in its quest. It was recognized

very quickly that the problem was a non-separable one and experience

in other fields had sPown that non-separable problems were not

I
amenable to exact treatment except in certain special cases. Since

it was the two-electron atom which had brought to the fore the

inadequacies of the "old quantum theory" it was realized that a

satisfactory treatment of helium was the first crucial test which

any new theory must pass°

With a certain sense of relief it was found that even the

earliest attempts 2_10 at an approximate solution for the ground state

met with reasonable success. Today_ with modern computational

equipment readily available_ it is possible to obtain approximate

3
solutions which yield energy values accurate to the same degree as

spectroscopic measurements° The two-electron atom has often served

as the testing ground or starting point of approximate calculations

aimed at larger less tractable atomic and molecular systems. Of

late_ it has proved possible to obtain mass polarization_ relativistic_

and Lamb shift corrections to the ground state energy with high

4
accuracy providing a check on quantum electrodynamic theories of

electron interaction° Indeed_ the importance of the two-electron

system in modern quantum mechanics needs little emphasis.
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The success of methods directed at obtaining analytic solutions

has been somewhatless spectacular than those which have sought good

approximations. Even the form of such solutions is in somedoubt.

In fact, for twenty-two years the existence of solutions was never

pr oved 5 .

The purpose of this work is to present a critical survey of the

past efforts to obtain analytical solutions and to introduce a new

approach by means of which an analytical solution may be realized.

Although a great deal of the past work on approximate solutions will

be mentioned, this thesis is not intended to be an exhaustive review

6
of the subject . The following pages will concern only the non-

I!

relativistic, electrostatic Schrodinger equation for two electrons

moving in the field of a fixed nucleus of charge Z . Only the

ground state will be discussed here 7. Whenever any energy eigenvalues

are given they will concern only the case Z=2, the He atom. Spin-

orbit interaction will be ignored and it will be assumed that the spin

has been removed from thl problem.

Using conventional atomic units (energy measured in Hartreesj H;

II

length measured in Bohrs_ B) the Schrodinger equation is

(i)

where

H:-'-{v,'
r,
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The vectors r I _ r2 and r12 = r I r 2 specify the positions of

the electrons with respect to the nucleus and to each other_ while

V_ is the Laplacian operator in the space of the i'th electron.

For the ground state _ is a function of only three

variables 8 which specify the shape of the electron-electron-nucleus

triangle and _ must be symmetric with respect to interchange of

the labels on electrons I and 2. The ground state is thus a para-

state.

The plan of this thesis is as follows: Section II presents an

historical survey of the past attempts to solve the helium problem

and is divided into three parts: Section II.I examines the

variational approach_ section 11.2 the perturbation-variation

approach and section 11.3 the direct approach through the analysis

of the differential equatiQns. Section III presents a technique

by means of which an exact solution of a wide class of two-electron

problems may be realized. Section III.i treats the Hooke's law

model of the two-electron atom while section 111.2 examines the

delta function model for such a system. Section 111.3 is concerned

with the solution of the first-order perturbation equation which

arises in Z -I perturbation theory for helium. Section 111o4 treats

the total non-relativistic equation for the two-electron atom in an

analogous manner_ and in sections 111.5 and 111o6 this analysis is

extended to the two-electron diatomic molecule_ hydrogen_ and to the

two-electron atom in the presence of a uniform electric field.

The author's original contributions are (i) the discovery of



the beautiful and relatively simple first-order differential recursion

relations which occur in a one variable (r12) power series expansion

of the wave function for a wide class of two-electron problems

(section lll)j (2) the refutation of Bartlett's argument for the

existence of certain logarithmic terms in the helium wave function

(Appendix F)j (3) the consideration of the boundary conditions imposed

by the hermiticity of the Hamiltonian when using Hylleraas coordinates

(Appendix H), and (4) the treatment of the Hooke's law model for the

two-electron atom (Appended report, Appendix E, and section III. I).

An investigation has also been carried out by the author into

the possibility of finding four-particle perimetric coordinates and

this is included as Appendix D.



II. A CRITICAL HISTORICAL SURVEY

In attempting to solve an eigenvalue problem like equation

(I.i) several alternative methods of attack are possible and almost

every technique has been investigated to some extent using the two-

electron atom. In spite of the wide variety of the approaches_ it

is possible to classify almost all of them under three broad

headings. These three main arteries which have led to the elucida-

tion of much information about the solution of equation (I.i) are

I. The Variational Technique_

2. The Perturbation-variation Techniquej and

3. The Direct Approach via the differential equations.

An examination of these main avenues and their many variants

will now be made. The study of the third or direct approach will be

more detailed since the first two techniques are probably more

familiar.
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i. The Variational Technique

Every student of elementary quantummechanics is taught the

power of using a variational approach in order to obtain approximate
I!

solutions to the Schrodinger equation. Appendix A contains the main

elements of the variational technique needed to understand the

following. In Appendix B a discussion of the coordinate systems

used to study equation (Ioi) is given.

Tables i and 2 contain a summary of the results obtained by

this technique for helium.

The earliest successful attempts 9 at a description of the

wavefunction for He were rather crude, but served to indicate that

a description of experiment was possible. Indeed_ Kellner's result 2

of -2.847656 for the ground state energy (using scaled hydrogenic

functions) accounted for 98.1_of the true value. Hylleraas took

the problem in hand I0_II_12_13 and pushed the theoretical results

into almost complete agreement with the experimental evidence of

the times. He realized that the wavefunction must depend on three

variables and that the chief reason for the inaccuracy in the

previous attempts was the absence of the third variable. Hylleraas

saw that there were essentially two paths open: i) the introduction

of the third variable as an angle (see equation (B.2)), or 2) the

introduction of the third variable as a length (see equation B.3)).

He found that the first choice was not well-suited to rapid



i0 adaptedl2convergence 3 but that the secondwas extremely well to

the task at hand. The first choice has since becomeknown as the

method of superposition of configurations_ while the second method

maybe termed the direct r.. method. The culmination of
lj

Hylleraas's early work on helium was the introduction of a six
12

parameter wave function which was to remain the best approximate

wave function available for twenty-four years. The eigenvalue he

obtained_ -2.90324_ is in error only by 0.016_.

Hylleraas's calculation was extremely important in that it

demonstrated that the existing formulation of quantummechanics

was capable of reproducing experimental results on a system with

more than one electron 14 It was only after this had been proved

that wide acceptance of the formulation of quantummechanics was

gained.

Hartree 15 and Fock16 approached the problem in a little

different way. Rather than merely inserting parameters into a trial

function and determining the best values of these parameters by the

variational theorem_ they sought to determine entire functions by

minimization of the energy. If a trial function of the form

is used and if the variation of the energy integral is carried out

with respect to arbitrary variation in _ , then the equation

which determines _ is



with corresponding energy

(2)

(3)

This equation, which determines both the best wavefunction of the

form given by equation (i) and the best energy associated with this

form, may be solved numerically 17, by perturbation theory 18'19, or

by assuming a form for _ with variable parameters and iterating

until self-consistent values of the parameters are obtained 20. The

energy obtained by this procedure, -2.86167, does not compete with

a Hylleraas type variational calculation, but the extension of

this technique to larger systems is straightforward and has yielded

21
much important information on many electron atoms The error in

22
the energy in this calculation is called the correlation energy

since the Hartree-Fock approximation only takes into consideration

the motion of each electron in the average field of the other and

does not consider specific correlation between the motion of the

electrons. The recent concepts of the natural spin orbitals 23, and

extended Hartree-Fock theory 24 (different orbitals for different spins)

are important_ but their detailed study is beyon d the scope of this

thesis. Table 2 does contain some results of these techniques for

the ground state.



The variational theorem provides only upper bounds to the energy.

Several workers 25' 26 have attempted to obtain lower bounds which, for

the ground state at least, would agree with the upper bound calculations

to within experimental accuracy. No such complete agreement was found

and the problem of finding good lower bounds for the energy eigenvalue

is still not completely solved27. The present state of the work on

lower bounds is summarizedin Appendix C.

The fifties saw a new awakening of interest in the problem of

the two electron atom, and the improvement in computational

facilities greatly extended the capability of the researcher. The

method of superposition of configurations drew renewed interest 28'29

because this method of introducing correlation between the motion

of the two electrons was more easily extended to larger systems than

the direct introduction of metric variables and also because it was

not understood why the method converged so slowly. More details

concerning this technique are considered at the end of this section

and there the reason for the slow convergence will become clear.

Numerous investigators 30'31 also considered the problem by

introducing a third metric variable as Hylleraas had done. Only

now, guided by theory, various coordinate systems (see Appendix B)

32,33
and various unconventional terms (half-integral powers,

logarithmic terms 3'34'35 negative power terms 25'36) were tried in

large variational treatments. One of the most interesting of the

new coordinate systems to be tried is the perimetric coordinates

used by Pekeris. 37'38 Perimetric coordinates have the property
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that each coordinate has the independent range (O_). Thus_ if

the trial wavefunction is expandedin terms of a complete set

consisting of a product of three Laguerre Polynomials with

appropriate weight factor_ the recurrence relations between the

Laguerre Polynomials and their orthonormality property permit

the evaluation of all matrix elements in a simple way. The infinite

secular equation_ which is then truncatedj consists of a sparse

determinant of easily obtained elements. These properties allowed

Pekeris to consider a determinant of order 107838.

The extension of this technique to larger atoms39J40 would

have permitted very exact calculations in a simple manner. It has

been provedj however that extension is not possible 41_42. The

author's contribution to this effort is contained in Appendix D.

Today the best variational calculational on the ground state
3

of helium is that of Frankowski and Pekeris . Using logarithmic

and half-integral terms they obtained the result -2.9037243770326

with a determinant of order 246.
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2. The Perturbation-variation Technique

Concurrent with his early success using a strict variational

approach to obtain an approximate solution of equation (I.i)_
13

E. A. Hylleraas introduced and applied perturbation theory to

the two-electron atom. At first_ and for over twenty-five years

thereafterj perturbation theory was considered useful only for

atoms of large Z43 It was thought of_ by Hylleraas himself_ only

as a theoretical guide44 to be used for interpolation purposes.

Within the last few years_ however_ the technique has come to be

regarded as one of the most powerful practical meansat the disposal

of the researcher. As there have been several recent reviews on

the subject_ 5_46 the treatment presented here is intended to serve

mainly as a guide to notation.

It has been proposed47 to call the perturbation approach

described here the Hylleraas-Scherr-Knight (HSK) variational

perturbation method. The notation used here is that introduced

by Scherr and Knigh@8_49'50 and more details on the method are

presented in their work.

If the units in equation (I.i) are changed to Z-reduced units

(energy in Z2 Hartrees_ length in Z Bohrs) the Schr_dinger equation

for the two-electron atom becomes

(Ho V- E) =o (4)

where
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2.

I I

V- I

_= --| .

(5)

The parameter_ = Z -I thus becomes a "natural perturbation

parameter" and the assumption that _ and E are analytic functions

of this parameter

4_O

(6)

(7)

leadsj after substitution of equations (6) and (7) into equation (4)_

to an infinite set of coupled equations for the _ and _,

•-z (8}

where terms in equation (8) with negative indices are to be ignored.

The first equation in this series is an eigenvalue equation

(Ho-Eo) o--o (9)
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whose ground state solution is

(io)

The remaining equations are inhomogeneous partial differential

equations whose exact solutions are difficult to obtain. Approximate

solutions may be obtained in the following way.

is employed having the form

A trial wave function

(ii)

where the q_ are chosen from some finite auxiliary set

(12)

Insertion of equations (ii) and (7) into the variational theorem_

equation (A.3)_ leads to the following set of equations

4qo,,CHo-_o)%>+ 2 K_, (v-e,)_,.,>

- _ _ 7__4_, _-,_-;>>iE,_<_,m>,
•_':z .L:,_-,p

,'_: IjZ,..- (13)



14

L
where negative indices are to be ignored and where _/r_, _--2_

and

_+_ p=0,1,2,...,n-i have already been sufficiently exactly

determined. This_ then_ is a variational equation which mayused

to determine _I _2_+| maybe calculated by the equation

Hylleraas's early calculations were concerned with obtaining

an approximate first order 13 wave function_ but Scherr and Knight

realized that higher order calculations were fairly simple to obtain

using a computer and they calculated an approximate sixth order 50

wavefunctiono Midtdal has since published a calculation to twenty-

first order47 in the energy (tenth order in the wave function) and
4

has someresults to mkchhigher orders . Table 4 gives the energy

coefficients available° In their calculations Scherr and Knight

used a basis set (vi in equation (12)) consisting of I00 terms of

Kinoshita type while Midtdal used up to 204 terms of Hylleraas type.

(See Appendix B for nomenclature on type of terms.)

There are many facets of this perturbation treatment which are

still in the forefront of research and it is impossible to consider

them all here. One interesting study concerns the radius of

convergence of the perturbation series for the energyj equation (7).

It is knownthat this series converges51 for small enough _ and

that the radius of convergence is finite_ but the position and type
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52
of singularity nearest the origin is not known. Stillinger _ using

Midtdal's results, has tentatively characterized the singularity as

a branch point on the real _ axis at _ = 1.1184 of approximate

order 6/5 (1o2057). Midtdal_ however_mentions53 that oscillations

set in at higher order which destroy the regular nature of the

energy coefficients and it mayrequire more investigation to

determine whether or not this is caused by the finite basis set

used. Midtdal estimates the position of the singularity at

_--_'1.22. Clearly the question of the radius of convergence

remains open_but it seemssafe to conclude that the series converges

for all systems of interest_ Z_ i

Perturbation theory has been used in other ways to study the

two-electron atom. Byers Brown and Nazaroff 54 discuss the perturba-

tion theory of the correlation orbital. The solution to the Hartree-

Fock equationl_ _19 equation (2)_ may be approached using the

technique of perturbation theory. Byron and Joachain55_56 have used

the Hartree-Fock wavefunction as the zeroth order approximation

(instead of the hydrogenic _ in equation (i0)) and have calculated

the energy to fifth order. Their results are given in Table 5.

Here the perturbation parameter is equal to unity.
56

Byron and Joachain also present an extensive calculation of

the superposition of configuration type for the first order wave
-I

function and the second order energy in Z perturbation theory.

The first order equation (cf. equation (8)) is
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+ =o (15)

where

for _ (equation (13) with

functions of the type

is given by equation (i0). The variational principle

n = i) is then used with trial

(16)

where various forms with embedded parameters are used for

The second order energy can be put into a corresponding form 57

the

Byron and Joachain's calculation was continued through_= 20 , and

the resulting "_t_} to _ = i0 are given in Table 6. In Appendix E

it is demonstrated that the asymptotic form of _t_) for large

should be

(18)

This asymptotic formula gives

(.,.(to) = -0.992 XlO _
(19)



17

while Byron and Joachain's variational results give

(20)

which is reasonable agreement.

This calculation demonstrates the slow convergence inherent

in all superposition of configuration calculations. The coulombic

repulsive potential between the electrons causes the energy

associated with the P_, component of the wave function to behave

like _7. Thus, many _ values must be included if extremely

exact results are required. On the other hand_ moderate accuracy

is relatively easy to obtain. Although the argument given here is

for the first order wave function, similar reasoning applies to

total wave function_ 8
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3. The Direct Approach via the Differential Equations

II

Direct attempts to study the Schrodinger equation for the two-

electron atom have not_ in general_ enjoyed the success of the

variational type calculation. This is mainly due to the non-

separability of the equation and the corresponding lack of any

definite scheme for the development of acceptable solutions. The

earliest work in this direction was by Gronwall5? _60 However_ he

died before he was able to achieve any concrete results. Bartlett 61J62

was the first to make a statement about the actual form of the wave-

functionj but his work is essentially of a negative nature in that

he showed what type of function could not be a solution of the

II

Schrodinger equation for helium. Bartlett 62 also purports to show

that a certain type of logarithmic term must appear in the true

solution_ but it is shown in Appendix F that his analysis is

5_51_64j65

incorrect in this respect. Kato_ abandoning this type of

analysisj was able to prove a number of general theorems by

resorting to the abstract theory of operators in Hilbert space.

In particular_ he was able to show rigorously that the wave equation

for the two-electron atom possesses a solution for the ground state.

Fock 66 was able to characterize the solution as being of a certain

type containing logarithmic terms (which were of a different type

than those mentioned previously by Bartlett)_ but was not able to

realize a complete solution because of computational difficulties.

Kinoshita 36 considered series solutions in more detail and showed

that a certain type of series could yield a formal solution to the
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equation_ but that such solutions did not appear easily realizable.
67

Munschyand Pluvinage also attempted a series solution but were

unable to overcomethe computational difficulties.

Kato's Results

Kato's results 5_64_65 solidify the ground on which muchof

what follows rests and willbe summarizedfirst. Kato proved

I. That the Hamiltonian operator H of equation (I.i) is

essentially self-adjoint whenrestricted to functions in a

certain domain

2. That the domain _ on _hich H is defined is completely

characterized by the following boundary conditions in terms

of the momentumrepresentation

(21)

j-: |,%,

3. That the eigenfunctions of this Hamiltonian operator exist.

4. That the eigenfunctions are continuous and analytic_ satisfy

the wave equation everywhere except possibly at singular

points of the potential_ and possess derivatives of first

order which are bounded everywhere.
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5. That the following relations hold at the Coulombsingular

points (in atomic units)

°) (23)

is the average ofwhere

about the singular point _O"

The characterization of the domain of

(24)

over a small sphere

H in the momentum

representation is clear and concise but not very convenient for a

study of the differential equations in configuration space. The

proper boundary conditions which characterize this domain in any

set of coordinates in configuration space are difficult to formulate.

Roughly speaking_ however_ the following conditions are necessary

to characterize the domain

(26)
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and

(27)

for all _ and _ contained in O_OO

The words "roughly speaking" at the beginning of the last

sentence were necessary because a function _ need not be

differentiable everywhere_ but only need have generalized derivatives

up to the second order which are square integrable 68. The generalized

derivative is the inverse Fourier transform of multiplication by the

corresponding momentumvariable in momentumspace. If the functions

being considered are smooth enough the generalized derivative is

equivalent to the ordinary derivative and that will be assumedin

what follows.

Equation (27) merely states the fact that Green's theorem is

to be valid for functions in the domain _O In certain coordinate

systemsj e.g. cartesian coordinates_ the validity of Green's theorem

follows directly from equations (25) and (26)_ but in other cases

this is not so. Integration by parts of one side of equation (27)

leads to certain boundary terms which must vanish for all _ and

in the domain_Q These boundary terms are sometimes very

unwieldy_ especially in coordinate systems which do not have

independent ranges such as the Hylleraas coordinates s_t_u.

Nevertheless these conditions can always be obtained explicitly

by an integration by parts. Appendix H gives the conditions explicitly
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for the Hylleraas coordinates s,t,u.

Notice that the boundary conditions given by equations (25),

(26), and (27) are a bit stronger than the conditions usually

associated with the variational approach to the problem. Even if

cartesian coordinates are considered so that equation (27) follows

directly from (25) and (26), there is a difference between the two

approaches. The conditions required by the variational principle,

if the potential is coulombic, are that

(28)

and

< CIO (29)

where "_ is the kinetic energy operator. Equations (25) is

identical to equation (28), but equation (26) is equivalent to

C£) • (30)

This latter requirement is stronger than that of equation (29).

The situation seems a bit strange, but the above implies that the

variation is carried out with respect to a wider class of functions

(those which satisfy equation (29) and then if the extremum is

obtained for the variational integral the resulting _ will satisfy
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the stronger requirement_ equation (30).

Fock's Method

Fock66 approached the two-electron problem in a more traditional

way and discovered that the wavefunction must have a certain form

which contains logarithmic terms. If the equation for the two-

electron atom is written in Z-reduced atomic units and if perturba-

tion theory is applied to the equation, as in equations (4) through

(I0)_ the equation which determines the first order correction to

the zeroth order wavefunction given by equation (i0) is

(31)

where

60---- --I (32)
)

If the variables used are those introduced by Fock (see Appendix B)
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then

(33)

__ e e• e
(34)

where

(35)

and

The properties of the operator _ are given in Appendix G.
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Lee

where

_o : ( I--_,_d, _ eF'_,

Equation (31) can then be written in the form

P
as power series in the variable

Expand _"/@

D

(36)

(37)

(38)

(39)

with

_°}-_-'(,-I)'*[_e +_ _)'"
iAft,,

Assume a similar expansion of k__
'i

(40)
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oo

_=0 _ )

substitute equations (41) and (39) into equation (37) and equate

powers of p on both sides of this equation. This leads to the

I
following equations for the _

t2 /1 (I)-_ _o , - ± E:o,_,.-_
2 (/ ),i/.,.

H'OII O'p

; J e

(42)

where negative subscripts are to be ignored. Note that the boundary

condition on _ required by the fact that the ground
state is a

para-state is simply

_,(_,_.e)= _,/e,_r-_,_).

The first of this set of equations

(43)
i

has as its only square-integrable solution
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C "IT -I- for convenienceChoose O -

The next equation

(45)

has a unique solution by virtue of the fact that the homogeneous

equation has no solution_ other than the trivial one_ obeying the

boundary conditions. The solution of equation (45) is

O
(46)

The third equation is

(O) _0)c,) a _ -' &1Ca'+3) = a },

"Z -_C_o o,

(47)

The homogeneous equation corresponding to th_ case does have

square-integrable solutions_ unlike equation (45). Thus in order

for a unique solution of equation (47) to exist_ the inhomogeneous

part of that equation (the right hand side) must be orthogonal to the

solutions of the homogeneous equation. The general solution of the

homogeneous equation is (see Appendix G)
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o__-_c,,___,(_,e) + d,o_,,o(_,_} (48)

where

(49)

By virtue of the fact that

-=-__,,,,(-_-_,e) = - "_,,o(,_,e)

the right hand side of equation (47) is indeed orthogonal to _O

but it is found that the right hand side is not orthogonal to _Ii| •

Therefore no solution to equation (47) exists which obeys the
IV

conditions. Presumably some formal solution _boundaryproper %1-

could be found which yields the right side upon substitution into

the left side of equation (47), but any such solution would violate

the condition

(50)

This is essentially what Bartlett realized in 193762 although
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his coordinates were defined somewhat differently.

next step. He showed what form an acceptable expansion had.

assumed the form of the solution was

Fock took the

Fock

(51)

where the notation I_I means the "integral part of ____ "

Substitution of this form into equation (37) yields the following

r_ 11)
set of equations for the ._j._.

g_<o>

- -__° 7-',,-,,i<- --'_<>_-..-_,._

_'= O,lll,°" I

where negative subscripts and subscripts on

(52)

_,.c,)
,Q. for _A_'I are

hill i,)
to be ignored. The equations for 70,O and _I,0 are similar to

equations (43) and (45) and have the unique solutions

_'_ - l (53)o_o = 7T )

(54)
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For n = 2 there are now two equations of the form

(55)

and

-' 1'',°--'  ;2'0- 4-"'lm! .

The first of these equations is an equation for hyperspherical

harmonics. For the ground state the acceptable solution is

The constant appearing here is not arbitrary but must be determined

by requiring orthogonality of the right side of equation (56) to

the solutions of the corresponding homogeneous equation. This gives

the constant the value 35'69

II - • (58)

Equation (56) does have a solution of the required type since

the orthogonality conditions are now satisfied. For all higher

n _t_2 ) the same circumstance is met with. If the equations for

a given n are solved starting with the largest k possible_ all
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orthogonality conditions are able to be satisfied and the solutions

do indeed exist. The difficulties encountered are of a computational

nature only but these difficulties have not been overcomeand explicit

solutions to the higher order equations have never been given. The

part of the solution which has been explicitly determined is

or in terms of the Hylleraas variables s_t_u

I ,'11"

(60)

In going this far with the solution Fock was able to prove_

to the:condition that this form for _ would converge tosubject

a square-integrable result upon summation of the infinite series_

that the form of the solution must contain logarithmic type terms.

There would seem to be very little doubt about the form of the

solution but it should be kept in mind that without any knowledge

of the convergence of this series no definite statement can be made
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without further investigation° Fock's original argument was made
I!

for the complete two-electron Schrodinger equation not the first-

order equation_ but the argument proceeds in exactly the same way

in either case. It was this work which prompted Hylleraas and

Midtda134'70in 1956, Ermolaev and Sochilin 35 in 1964, and finally

Frankowski and Pekeris 3 in 1966 to study the effect of the inclusion

of logarithmic terms in trial variational wave functions. Although

Hylleraas and Midtdal's results did not clearly favor their

imclusion, Ermolaev and Sochilin's work did indicate that better

wavefunctions could be obtained with fewer terms by including these

logarithmic terms. Finally Frankowski and Pekeris demonstrated

that the form for the wavefunction suggested by Fock led to rapid

convergence when used in the variational principle and were able

to give the most accurate eigenvalue to date for the helium ground

state using 246 terms. This work certainly supports the validity

of Fock's expansion.

Asymptotic Form of

Another topic which has been the subject of some investigation

is the asymptotic form of the wavefunction for the two-electron

atom. Somehow most chemists_ and a few physicists_ believe that

the asymptotic form of the wavefunction must be 37, in Z-reduced units

(61)

L_
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for r I and r 2 large° The literature contains repeated references

to wavefunctions "constrained to behave correctly at infinity" when

they have the above form. Someworkers 71 have wonderedwhy scale-

parameters don't converge to the value of _ as the size of the

basis set is increased. The explanation is simple. Equation (61)

does not give the correct asymptotic form of the wavefunction. Fock_6

in the samepaper in which he introduced the logarithmic terms into

the wavefunction_ discusses the asymptotic form of the wavefunction

for large _ =_ His discussion concentrates on the

differential equation and in a simple way he shows that a possible

asymptotic form is_ in Z-reduced units

(62)

However_ Fock's derivation is not rigorous because he simply

assumed a form like the above and used the Schrodinger equation to

get the "fine points" of the form. Fock did not actually show that

the terms in equation (62) actually dominate the exact wavefunction

for large r I or r 2 .

Slaggie and Wichmann 72 have given a rigorous derivation of

asymptotic boinds on the wavefunction for a general bound non-

relativistic three-body system. These authors were able to show

that the wavefunction is dominated by a function of the form_ in

Z-reduced units
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ii

/

(63)

e

They were not conplete_ however_ in that they did not show that

there does not exist a "better" estimate than that given by

equation (63). Indeed, this seems very difficult to prove due

to the complexity of the analysis. The question of the best

asymptotic form is thus still open.

Asymptotic Large-Z Expansion

A different type of direct approach to the solution of the

Schrodinger equation has recently been proposed by Mendelsohn 73.

The technique, which is called the "asymptotic large-Z expansion",

begins with the assumption that, in ordinary atomic units_ the

solution may be written as
CO

(64)
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where _ and the _ff_ are to be determined.

also madethat
oo

E-#Z

The assumption is

(65)

where the

does not determine the energy. The forms above for

II

are substituted into the Schrodinger equation

_ are considered as known. Note that this method

and E

(66)

and the coefficients of the various powers of Z are set equal to

zero. This leads to the following equations for _ and the _

-_ -_ - _=i-"/ Go
J (68)

- _ [t'_,_/ +L%_)',2 _o.7: o,
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.J
(69)

Since

of q and

+ --_

which has the solution

and since _f_ is assumed to be only a function

_ , equation (67) reduces to

Z (70)

_= e,+_ , (71)

In equation (71) the coefficient of

relationships

A A

a vanishes. Using the
i

(72a)
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)
(72b)

- ) (73a)

zv',_t

and the form above for _ in equation (68) gives the following

equation for a
O

- _.,]Cto. = 0 • (_'_)
A particular solution of this equation is

(75)

Equation (69) for n = 2 similarly becomes

- r=, c_, _ E + _'_-_ +2.6 qo
r,,

(76)
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which is an equation for aI Let

(77)

where a is given by equation (75). The equation for #8
O

is

(78)

If the independent variables are chosen as s =

and cos e where 0 is the angle between

of

and

_ , _. , and _l'I. ) this equation becomes

, t =_i- _ ,

(instead

2" (79)

The author of this thesis is not sure oflthe boundary conditions

which Mendelsohn uses to completely determine the solution of this

equation but Mendelsohn gives the result _as

(8O)
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Thus the solution to order Z "I given by Mendelsohn is

This solution diverges logarithmically at _i: _ _ and if e = 0

the divergence becomes a first-order pole. Mendelsohn argues that

this s_lution is not valid near the singularities iof the potential

and that special techniques ("stretching and matching") must be

applied in these regions. In doing this Mendelsohn arrives at

forms of the wavefunction which are valid near certain singularities

in the potential_ but these solutions are found to contain terms

like _ . Since Kato 51 has shown that_ in Z-reduced atomic

Z -i
unitsj a perturbation series in powers of Z converges to the

true wavefunction_ and since even if the units are changed to

Z-reduced units Mendelsohn's solution is not of this form the author

feels that more experience is necessary in using the above type

of expansion (asymptotic large-Z) in order to decide what is going

wrong_ if anything.
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Numerica i Techniques

Numerical techniques have also been used to obtain approximate

" lett74,75solutions of the Schrodinger equation for helium. Bart

replaced the differential equation by a difference equation and used

a numerical iteration procedure to solve this difference equation.

Howeverhe couldn't determine the energy to better than -2.90 ! 0o01

using this technique even though the fluctuations in a quantity

H"/-'.__._... (82)

for his wavefunction were small, between -2.88 and -2.92j for all.

values of r 1 and r 2 up to 4B Frost 76'77,78 used the

constancy of this local energy as a criterion to determine an

approximate wave function. This technique, called the local-energy

method, consists in evaluating the local energy by equation (82)

at a certain number of coordinate points using a trial wave function

with arbitrary parameters and then determining these parameters by

requiring the variance in the energy to be minimized. Since no

integrals need be carried out this method could have some practical

advantage over the variation method if good results can be obtained

for larger systems than helium. The ground state energy of helium

has been calculated by this method as -2.9025, compared with the

more accurate value of -2.9037.

called the local energy
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Kalos79 has given a Monte Carlo technique for generating a

g,'-density function proportional to for helium by use of the

Green's function for the diffusion operator containing the repulsive

interaction. He used an iterative technique to get approximate

values of _ as a test of the goodness of --_" and obtained
_ g f

37_ 38
compared to Pekeris's value of

The agreement is good but the expenditure is also great. To produce

the results quoted above_ Kalos carried out eighty-one iterations

and each iteration took three-five minutes on a CDC 6600 computer.

Other Attempts

Attempts have also been made to study the two-electron

Schrodinger equation by means of the Green's function technique_

but most of these efforts begin with the free particle Green's

80
function and are thus cumbersome and difficult to iterate

analytically a sufficient number of times to be interesting.

Jasperse and Friedman 81 have made some headway by transforming

the integral equations to momentum space and then expanding the

wave function in terms of a convenient complete set. They then
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truncate the expansion and obtain a numerical solution to the coupled

integral equations. With a fourth order truncation Jasperse and

Friedman are able to obtain the value -2.9001 for the ground state

energy (comparedto -2.9037). They are also able to obtain estimates

on someexcited state energies. Onedrawback of the technique is

its present lack of a variational basis so that bounds on the energy

(and associated error estimates) are difficult to obtain.
11

A direct study of the Schrodinger equation in momentum space

82
has been made by McWeeny and Coulson. They considered the

possibility of solving the integral equation which arises by an

iterative technique but concluded that more than one iteration

would be an extremely formidable task. Thus no really accurate

wavefunction is available in momentum space_ since the Hylleraas

type wavefunction proves impossible to transform directly.
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I!

III. AN EXACT SOLUTION TO THE SCHRODINGER EQUATION FOR

THE TWO-ELECTRON ATOM

!!

The solution of the Schrodinger equation for the problem of two

or more electrons interacting with each other and with a number of

fixed nuclei contains the theoretical explanation of much of physics

and most of chemistry. An explicit solution of this equation for

all but the simplest cases certainly seems to be out of the range

of our present mathematical abilities_ but the author feels that

tt

the solution of the Schrodinger equation for two-electron systems

is now within reach. The reason for this optimistic statement is

the recent discovery of a convenient set of recursion relations

which considerably reduce the labor associated with a partial series

expansion of the exact solution, and which permit the direct

realization of the explicit form of the exact solution.

Many of the ideas used in the attack presented here on the

actual two-electron atom can be better appreciated after a study

of two model atomic systems. A treatment of these model systems,

the Hooke's law atom and the one dimension delta function atom_

reveals that certain features of the solution for the actual two-

electron atom are mirrored in the more easily obtainable solutions

to the model systems and clearly demonstrates the usefulness of

models when dealing with a difficult situation.
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i. The Hooke's LawModel for the Two-Electron Atom

In the actual two-electron atom the electrons interact with

each other and with a fixed center, the nucleus, by meansof

Coulombic forces. In the Hooke's law model for the two-electron

atom the electrons still interact with each other by a Coulombic

force, but they interact with the nucleus by meansof a Hooke's law

force.

t!

The Schrodinger equation for this model atomic system is

(i)

where m is the reduced mass of the electron, k is the force

constant of the electron-nucleus oscillator and r r and r
I ' 2 12

represent the usual metric variables in the two-electron problem.

If k is chosen to be Z4 for convenience and if Z-reduced atomic

units are used, equation (i) may be written as

+-' -E]@=o (2)

which is analogous in form to the Z-reduced helium equation. Appended

to this thesis is a discussion of the solution of this equation for

the ground state, and the results obtained there will simply be

quoted, not derived, here.

Due to the separability of equation (2) in the center of mass

and relative coordinates a perturbation solution exact to first order
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in _ = _I'_ is able to be given. In terms of the variables

and r12 this solution is

9(_,,',,,,,):Vo*-'_,÷ o(_,)

r I , r 2

(3)

whet e

(4)

and

_- (5)

+ S -

where

_| may expanded in a power series in the variable

result is

r The
12 "
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oo

:i _-,I-I z

D

(6)

The energy may thus be determined exactly through third order in

E= Eo+ z" _, + _._'_,..+ _-3(-3+o{_'',}<7_

with

_o = 3
• (8a)

(8b)
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and

(8c)

")'z O, 0112S2_...,

where _ is Catalan's constant ( _ = 0.915965 ... )

Higher order energy coefficients have been determined numerically83and

are presented in Table 7.

A study will now be made of equation (2) without carrying out

the separation of variables. The object will be to study how much

progress can be made in solving the first-order perturbation equation

for the Hooke's law atom without explicit separation of variables

in the hopes of obtaining a technique which is applicable to the

similar first-order perturbation equation for the helium atom.

The first order equation for the Hooke's law atom is (compare

equation (11.15)) is

)'/-'o (9)
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where

IHo:--_(V#+_?)+{ _r,'* n_))

_O = _

and

If the three independent variables for the ground state are

taken as the metric variables r I , r 2 _ r12 then (see Appendix B)

(lO)

wher e

6r,
(lla)
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(lib)

Assume that the particular solution sought for _ may be

expanded as a power series in r12 beginning with the power Gr"

Co

(12)

with coefficients which are functions of rI and r2 to be

determined. Substitution of this form for _ into equation (9)

results in the equation

O0

- (H°- e0- z(_+_-_)_')%-

(13)
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where

Since it is known that the first order wavefunction may contain some

amount of the zeroth order wavefunction, the contribution being

fixed by the orthogonality condition

%}= o (14)

the value of (_ cannot be greater than zero. It may be argued

that the first order wavefunction nee____dnot contain any amount of

the zeroth order wavefunction and though this is true, it is equally

true that in general it may and this must be accounted for by the

form assumed for _ Suppose _" is less than zero, say

The equation for _0 is then

_(16)

and

where

_0= _ (_,_+r=_)

f is not determined. This means that

(17)
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and as r12-'_0 _ 4| diverges. But Kato's work5_64_65

that _I remain bounded. Therefore _" must be zero.

the equations for the _

(18)

requires

With_= 0 ,

assuming independence of the powers

of r are
12 _

(19)

(2O)

rn> 2 . (21)

The coefficients of the odd powers of r12 can be determined

by the recurslve integration of these equations_ beginning with

equation (19). The determination of the coefficient of the even

powers of r12 presents a new difficulty. There is no equation to

_O , and so _ must be determined by somedetermine other

means. In fact the only requirements on _I not explicit in

equations (19)_ (20) and (21) are the boundary conditions associated

with this problem. These conditions are
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(22)

(23)

(24)

where _ is any function contained in the domain _O of the

Hamiltonian H . To proceed with the determination of _O write

in the form

(25)

where is to be chosen to make satisfy the boundary

conditions above° If the variables are taken as

(26)

with ranges (O) _ ) and (--,'_1_' _ ), then

J
(27)
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R--_ L × b__
o- _e2

+_a +z_ +¢ ]

,"98)

and

(29)

Equations (19),= F21) become

2
(3o)

+$? ,,,o
(31)

,¢:Lr.J/ n 6

,'_'7 2- •
(32)
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These equations may be integrated explicitly°

solution to equation (30) is

 4-a

The squar e-integrab le

(33)

or

(34)

since _O is independent of y o

Partition each of _ in the same way as _ in equation

l

(25)_ that is let a prime indicate a recurrence back to _ Then

(35)

or

(36)

where

(37)
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Continuation in this manner gives
_O

(38)

where

+ + Q _0

(39)

and (2n + 1)._. _ = (2n + l)(2n - 1) .... 3.1

In this case a summation of the series in equation (38) shows that

_I_) since the already obeys correct boundarysolution the

conditions without any contribution from _ That this is

indeed the correct solution may be verified by comparison with

equation (8).

In Appendix E it is shown that if the solution * is expanded

in a Legendre series in cos _

radius vectors r 1 and r 2

_mO

where O is the angle between the

(4O)
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then fc,r large _ t'he

- _7_°_I

f_ behave as follows

+ _eq
_- ® _, ® (41)

q
(42)

_4 3 _ +2"_

_-'_ ,6YJ_(: _)_

and (_4.)

%:5-____/_l,¢+-_)
G+r_

. (as>
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It should be possible to derive this form for f_ and the values

of f(-n) from the series expansion given in equation (38)° Let

oo

(46)

where the R/rla _ have been given by Sack 84. The R n_ used

here are RS_Q. and R3jp_ and these are

(47)

and

3 rZ
(48)

Substitution of equation (46) into equation (38) and comparison

with equation (40) leads to the result

(49)

for large _ But
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and

@ +÷) _------
+ 0 (-_-_) (_o>

where S and _ are given by equations (44) and

Therefore substitution of equations (50) and

equation (49) yields

w q __- , _

(_._-_)'-

(45).

(51) into

(51)

+o(_-_) (52)
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in complete agreement with equations (42) and (43), which_is, of

course, expected.

Thus the solution_ through first order_ of the problem of two

electrons interacting coulombically with each other and harmonically

with a fixed center is solvable by assuming a simple power series in

the interelectronic distance and by using only simple first-order

differential recursion relations to generate the coefficients. Some

difficulty arose with the coefficients of the even powers in that

the lowest coefficientj independent of r12 _ was not determined by

the recursive equations themselves. For the Hooke's law atom_ this

difficulty was able to be overcome by a direct summation of the

power series. Indeed_ it is difficult to see how to determine the

lowest coefficient without a direct summation of the series.
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2. The One-Dimensional Delta Function Model for the Two-Electron Atom

The Hooke's law model for the two-electron atom is unlike the

actual two-electron atom in several ways, but a major difference between
II

the two is that the Schrodinger equation for the former is separable,

while that of the latter is essentially non-separableo Therefore,

although certain features of the real atom are predicted by the

Hooke's law model, others are not even hinted at.

11

A model atom which has an essentially non-separable Schrodinger

equation but which is simpler than the actual two-electron atom is the

one-dimensional delta function model. W. Byers Brown 85 has carried

out an extensive study of this model and pertinent results from his

analysis will simply be quoted_ not derived, here.

11

In Z-scaled atomic units the Schrodinger equation for this

model is

(53)

where A =

and the variables have the ranges _, _,_--CK_ .

By integrating this equation over _ neighborhoods of the

singularities it may be shown that the following conditions must

characterize the solution
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"x/o* _,3X/o- "

(54a)

(54b)

(54c)

and

=0 ___, x,_

Of course the standard conditions of square-integrability and

continuity alsoapply to

If a perturbation expansion is assumed for _ and E

(no proof of convergence has been given for this case)

OQ

)

(54d)

(55)

and
QO

E= L X'(_
(56)
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then the zeroth order problem

(57)

where

has as its only bound state solution

(58)

with

(59)

and

'2.,,

(60)

The first order perturbation equation for this model is

(61)
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The first-order wavefunction may be decomposed into even and odd

parts

(62)

Where

lV_ ,l i_) . I_l

and the and can be determined to be

(64)

and

q'2"= -_ ,s, . n_
(65)

where

r _--z c,_+#_),
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and Ko is the modified Bessel function of degree zero

0_

- t _-- °

An alternative representation of *||) is

(66)

(67)

where

• (68)

Using this first order wavefunction the second and third order

energies may be computed and are found to be

(:.2 = 7-_ = -0. 1(o2..79..,, (69)

and

=_L = O.ol3qgq, °.
(70)

In order to appreciate the similarity between the delta-

function model and the actual two-electron atom rewrite equation 53

in polar coordinates
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B

(71)

as

where

7_ (72)+_A_ _ E =O
e

and

For _--O the solution to this equation is

(74)

<_5)

and may certainly be expanded in a power series in the metric

variable p It is logical_ then_ to assume a power series

form for the solution when _ _ O
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OO

(76)

where the _,_are to be determined°

Substitution of this form for

to the following equations for the _

a_ _-dq_2" o 0 )

into equation (72) leads

(77)

C : - 2 _o_ o )
(78)

(79)

O-- I • (8o)

(which must be periodic in

taken to be

The above are inhomogeneous equations for the _,_ and possess

solutions only if the inhomogeneous part_ or right hand side_ of

each is orthogonal to the solutions of the corresponding homogeneous

equation. The first equation_ equation (77)_ possesses a solution

with period 2_ ) which may be
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The solutions to the homogeneousequation corresponding to

equation (78) are

and the right hand side of equation (78) is orthogonai to both of

these functions. A solution of equation (78) thus exists ar;d may

be found to be

where H(_ ) is the Heaviside step function

(82)

+i ×>0
0 X<o

But now it is found that for n=2 the right hand side of equation (79)

is not orthogonal to the homogeneous solutions
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Therefore equation (79) for n=2 possesses no solution which obeys

the proper boundary conditions and the form assumedfor _ by

equation (76)_ a simple power series in _ , is incorrect.

This is exactly what happens in the actual two-electron atom

as will be seen from a comparison of equation (II.37) - (II.50) with

the above.

This result is actually borne out_ through first order, by the

explicit wave function given by equation (62). Although a treatment

for all x,y is difficult, for x=y the form of _. is
II

(85)

where

(86)

and

(87)

For small I_

of the form

an expansion of _L_IX# may be made and is

+
(88)

which shows explicitly that a power series in p is not possible
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through first order. Note, however, that higher powers of the

logarithm do not occur in this case, at least for x=y _ whereas

the corresponding form for the actual atom contains an infinite

numberof logarithm terms.

Table 7 contains the perturbation energy coefficients and the

correlation energy coefficients (E_o%a"= E_ - E HI= ) for the

two models discussed here as well as for the actual two-electron

atom.
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3. The First-Order Perturbed Wavefunction for the Two-Electron Atom

The technique suggested by the author for the analytic solution
TI

of the two-electron Schrodinger equation is most easily understood

when applied to the simpler first-order perturbation equation. The

method of solution which may be called the partial series expansion

technique of this inhomogeneous partial differential equation will be

examined in detail.

In Z-reduced atomic units the Schrodlnger equation for the two

electron system is

(,H0+ __-'V- E)_ - o (89)

-I
where V = r and

12

H '(v,' _,') 'o:--i + ..__ I
P, N •

Expansion of _ and E in powers of Z -I is possible

(90)

(91)

E = &o + =--"(:, + 7.'z (':2.+ _:'3E3+.-; (9_)

the resulting series being convergent for large enough Z,

The zeroth order results are
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(93)

for the ground state. The first-order perturbed wavefunction

is given by

(94)

where _I = 5/8 The solution of this equation is uniq_ie except

to the extent of an additive multiple of _ _ which can be fixed

by demanding that _I is orthogonal to

depends on three variables which are taken to be the

metric variables rl_ E2, r12.

The ranges of the variables are not independent, but are

governed by the triangular conditions

(95)

Let Ho be partitioned into two parts

Ho= Ho/ .A
(96)

where

(97)
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and

(98)

where

q _a --L a I

_, r_ _r_ "

(99)

Equation (94) for _I may then be written as

-- I - -- , (loo)

Assume that _I can be expanded as a power series in r12 with

coefficients which are functions of r and
i r2

Oo

The series may be begun with the power _ as for the Hooke atom
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(equation (12))_ but the argument given previously leads to _= 0

Such a solution can certainly be a formal solution to the

problem as is shownbelow. Appendix I explains what is meant by a

formal solution to an equation.

Equating coefficients of various powers of

to the set of equations

l

r to zero leads
12

(102)

I !

J_

for the _ . The same situation arises here as with the Hooke

atomj that is _O is not determined by these equations. There

is then an arbitrariness in the coefficient of the even powers of

r12 which can be fixed by requiring _I to obey the boundary

conditions (see equations (22)- (24)).

Put

¢o: +
(105)
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where _0 is determined by the requirement

<_,,%>:o

and q_ is determined by requiring _ to satisfy the

boundary conditions, The equations (102) (104) may now be

integrated directly by the introduction of the variables

2 2

y = r I - r 2 so that

Equations (102) (104) become

(lO6)

2 2
x = r I + r_2

_C,_¢P,): ,_%9- j
(107)

(lO8)

, ___++I _- I

(109)

where
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: r-----].
(ill)

The coefficients of the odd powers of r12 may now be

determined explicitly by requiring that each term of (i01) be square

integrable. For _i the result is

(112)

Or

.I

= ! - i-_) t i-I._
"2" _TF JO (113)

wh ere

_= _,-_
(114)
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and

can also be reduced to a single integral and the same

appears true for the higher odd coefficients. _ can be written

as

(115)

whet e

I
%(Ho-

o (116)

An expansion of each coefficient may be made in powers of -'71Z and

the first few terms of the first coefficients are

_: !_[I -i 17_ IS 2 ,,)

+
77 (118)

o s s ,_Is117z+'° (I19)

The coefficients of the even powers of r12 are not yet completel.y

determined but the coefficients of the odd powers of r12 have no
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arbitrariness. A check on the odd coefficients is available. In

Appendix E it is shownthat if the solution _ is expanded in a

Legendre serSes in cos @ where @ is the angle between the radius

vectors r I and r 2

(120)

then for large _ the f_ behave as_ -2

_. _ + (121)

where the f_'_) can be determined independently of the above

series solution.

Equations (46) - (52) demonstrate that the corresponding

series solution for the Hooke's law atom leads to the correct

f(-2) for that model. The same is true forvalues of f(-l) and

the actual atom_ _ and

directly give the same

What about _l ?

f(-l)

above (equations (117) and (119))

and f(-2) as quoted in Appendix E o

It is known that the first order wavefunction

can not be expanded in simple powers of _ = _ _ yet

the above expansion with _ absent is just of that type. Thus

_ must not be zero. But _ is needed only if the rest of _

does not satisfy the proper boundary conditions. A more detailed

analysis is necessary to discover why _ with _'%O does not

satisfy the boundary conditions. In effect a partial summation of
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the series for _ _ equation (i01)_ will have to be made°

In order to further investigate the behavior of _ it is

convenient to write equation (109) in terms of the variables Sand

_L _ (see equation (114)).

changed to _ defined by

$

Let the dependent variable be

(122)

Then equation (109) becomes

L

+

-ff_._ c.5_" +r_3___'r..

(1.23)
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A hint of what to expect can be found in the above equation°

Notice that _ equation (i19)_ has a term S-|_ -5- The

above equation then will produce a term in _ which behaves like

S-3_ "_ _ in _7 a term like S_5-_ -_ and in general

_| will contain a term like S "_I _-_ That

meansthat _ will contain terms like
If

N C_ + o Q _ (124)

and if _ _-L for large n this partial sum converges

to a term proportional to log Cl- _ _-) which is divergent

at _= A_. This type of term violates the boundary conditions

as can be seen from Appendix H o

Anticipation of the above leads to the expansion

_O

e (125)

Substitution of this expansion into equation (123) and equating the

coefficients of the various powers of _ to zero determines
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(126)

- #_(_,_-i__ +
$7-

where n_ 3 , k_ 0 and the _,_with negative indices are to

be ignored. For k = 0 this equation becomes

#_,o(S)= _c,_,i---"-)"_ ÷ -2

_ _- _-2, I

,_ P_+I 62.

(127)
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This recursion relation is still too complex to treat easily_

terms of O_---i _ are dropped the simpler equationbut if

(128)

is obtained. Since it appears likely that the leading term in

behaves like _--_ for n odd assume

q-

n odd_ 3 (129)

Substitution of this form for _j O into both sides of (128) and

again dropping all terms of _(_)leads to

\ +11
(130)
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Relating back to C-- I; B, O gives

for n odd > 3 and where C-l,3jO _-"°---_)|

coefficients may be partially summed

:

or performing the summation

(131)

Thus the odd

(132)

Other partial summations of * can be performed and they lead to

similar but non-canceling results. This type of term violates the

boundary conditions given in Appendix Ho Hence is no____tzero

and must cause a cancellation of all such terms in the final result°

By Fock's analysis (see equations (Iio51)-(II.60)) must

contain terms which are logarithmic in the variable _ =_'*_

In fact it is somewhat reassuring to notice that in Fock's method for

generating the exact solution_ the logarithmic terms in _ enter

only in conjunction with the even powers of _._ _ in complete

agreement with the above analysis.

I
Except for _b and the subsequent coefficients of the even

of r12 derived from I_ the soiution is completelypowers
'U

L
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determined, At this point it is not known how to determine _o 8

explicitly_ but the author feels that must be determinable and

thus that the exact solution of the first-order equation can be

realized by this technique.
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II °

4. Power Series Solution of the Schrodlnger Equation for the Two-

Electron Atom

The same technique used to obtain the solution to the first-

order perturbation equation for the two-electron atom may be applied

II

to the complete Schrodinger equation for that system.

II

In Z-reduced atomic units the Schrodinger equation for the

two-electron atom is

(.Ho : o (134)

where _--- _-| and

(135)

As before write

(136)

where --/HO and A are given by equations (97) and (98). Assume

that a solution exists of the form

(137)

with the _ to be determined° Substitute (137) into (134) and

use the independence of the powers of r12 within the range



(_--Y'_ , _t +_.) to equate the coefficients of the powers of

to zero. This leads to the set of equations

(138)

r
12

85

' 9./

where _ and are given by equation (99).

(139)

The key problem is once again the determination of _ ,

because if _O is known all the higher _ can be obtained

by inverting the first order partial differential operators appearing

on the left side of equations (138) and (139). As before it is not

known how to determine _6 , but if attempts to generate _0 for

the first-order problem should prove successful similar techniques

I!

should work here for the total two-electron Schrodinger equation°

Appendix J contains published material on this problem.

Note that the second technique, the integral series solution:

contains an error in equation (8) and of course also depends

on _G being known.
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Note that_ in the case of the lithium atom_ where interparticle

coordinates can also be used_ the obvious generalization of equation

(137) to a triply infinite power series in r12_ r23 and r31 leads

to an inconsistency (of order _2) if only positive powers are

allowed.
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11

5. The Series Solution of the Schrodinger Equation for the Hydrogen

Molecule.

The non-relativistic Schr_dinger equation _or the simplest

states of the two-electron diatomic molecule with fixed nuclei of

atomic number _Q and _b a distance R apart may be treated in

11

much the same manner as the two-electron atom. The Schrodinger

equation for the two-electron diatomic molecule is

(139)

where

Ho= .,Ao) , .A¢2)
(140)

and h is the one-electron Hamiltonian

For Z states the spatial wavefunction _ depends on only iive

variables which can be taken to be the four electron-nucleus

distances ral _ rbl _ ra2 _ rb2 and the inter-electron distance

r12 . Note that the ranges of these variables are interdependent

just as with the two-electron atom variables rl_r2_rl2 • HO can
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be partitioned into two parts in much the sameway as was done for

the atom (equations (96) and (136)) and can be written as

Ho= H0a + A (1.42)

with

Ho - ca)+ ¢'_
(143)

and

where

A- - ( _ + 2 (_÷0 a- _r,_,
Or,,/

= _± +2__a +a __+z__

(145 )

(146)
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Assumea solution exists of the form86
(i[47)

(148)

T
where

the _are functions of the four variables ral _ ra2 _ rbl _ rb2

to be determined. Substituting (148) into (139) and equating

coefficients of the powers of r12 to zero leads to the equations

(149)

The same difficulty arises here in the determination of _ , but if

_O were known the exact solution could be obtained by the inversion

of the operators on the left-hand side of equations (149) and (150).

Since the operator _ is a first-order partial differential operator

this inversion can be accomplished analytically by a single integration.

It is hoped that a scheme may be developed for the generation of _.
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6. The Series Solution for the Two-Electron Atom in the Presence

of a Uniform Electric Field

The non-relativistic Hamiltonian for a system consisting of

two electrons in the presence of a fixed nucleus and a uniform

electric field 87 (in the z-direction) is_ in atomic units

(151)

I!

If Z-scaled atomic units are used the Schrodinger equation for the

system is

(152)

where

and

(i_3)

Since _ depends on five variables which can be taken to be

the four parabolic coordinates
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(154)

and the interelectron distance r

as

12 '
equation (_52) may be written

(H$ +A+± -E)_2= o
where

,H'= _± 5, +

(155)

9..
_ 2 +J'_-_7_)
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(157)

+±

(158)

and

Expansion of

distance r12

(159)
as a power series in the interelectron

(160)

with coefficients which are functions of the four variables

and substitution of this form for _ into
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(155) leads to the set of equations

(161)

to determine the _rl_

encountered here_ but with

(162)

The samedifficulty concerning _o is

known the first order differential

operators on the left of (161) and (162) can be inverted analytically

to give all higher _ explicitly.
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IV. CONCLUSION:WHYNOT_?

The growth in interest in two-electron systems over the past

few years has been truly phenomenal_as evidenced by Appendix K

which concerns only the ground st-ate of the two-electron atom. If
T!

an analytic solution to the Schrodinger equation is to be realized

for this system it is felt that the technique presented in this

thesis is the means by which that realization will take place.

The defect in the analysis presented here is that the "starting

function"_ _ , from which the solution is generated is, at

present, unknown. It is hoped that some new approach to the problem

is possible which will yield an actual equation for this function

_0 Since, for the ground state, _0 is a function onlyof

two variables this equation woild be only two-dimensionalo In

conclusion, then, the author feels that attention should be

concentrated on the determination of _0 for herein lies the

key to the complete analytic solution of the Schr_dinger equation

for both the two-electron atom and the two-electron diatomic

molecule.
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Appendix A - The Variational Theorem

II

As is well known_ the Schrodinger equation

(i)

is completely equivalent to the variational principle which states

that _ and E are given by

N

 E:O
(2)

where

- r

and where the variation is with respect to any arbitrary functional

variation _ This variation principle leads to the variational

theorem

(3)

where E is the lowest eigenvalue of H and _ is any function

in the domain of H Equality is obtained only for _- _ _ the

exact ground state eigenfunction. Actually_ a much more general

statement holds_ but since all work in this thesis concerns the

ground state the above _ adequate.
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88
In practice_ parameters are embeddedin sometrial function

qj ~_ the functional E _ equation (3)_ it computed and finally

the parameters are chosen to make E a minimum. This minimum is

then an upper limit to the true ground state energy.

Two types of trial functions are common and are often used

simultaneously. The most convenient form to use for * is that

of a linear combination of basis functions. Suppose that a trial

function of the form

(4)

is assumed_ where the Lr_ are some convenient set of basis

elements in the domain of _ and the co are constants to be
1

determined by the minimum energy requirement

4'V

" N_E - 0 _,=0 _- .-- (5)

Substitution of equation (4) into equation (3) followed by

minimization leads to a determinantal equation of the form

- = o (6)

wher e H
g

m

is the matrix with elements

(7)
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and 5 is the over lap matrix

The lowest root of this equation is the best upper bound on E

obtainable with the particular basis set using only linear parameters.

A second type of parameter may be introduced into the problem.

This is the scale parameter and is non-linear. If too many non-linear

parameters are used, the calculation becomes unwieldy, so only a

uniform scale will be considered here. Usually the Hamiltonian is

of the form

where the kinetic energy, T, is homogeneous of degree -2 and the

potential energy, U, is homogeneous of degree minus one. Let all

coordinates in a trial wavefunction be scaled uniformly by _ ,

where "_1_ is to be determined. Equation (3) becomes

where

)
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and

17 =

Minimization of E with respect to leads to

and

- (_2)

Z _(_

89
The wavefunction thus minimized satisfies the virial theorem°

In practice] for large basis sets_ either no variation in

the scale parameter is allowed 47 or else some type of relaxation

technique 36 is used to obtain _-
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Appendix B. Coordinate Systems for Ground State Calculations

Various coordinate systems have been suggested or used for

calculations involving the two,electron atom in its ground state.

This Appendix gives the form of the relevant quantities for all

of the commonly used coordinates. The form of _| _)_ + _V_._ _

is given because this is the way the kinetic energy is Usually '

written when using the variational theorem. By Green's theorem

when the surface term vanishes. That the surface term must vanish

is a consequence of the natural boundary conditions'as " _ " __"soc fated _wlth

the Hermitian property o,f the energy.
....

(2)



I00

V_• n_+rJ- _r,r__o

(3)

+ _,_÷r,_-__ 3__ + r_+r,,-r,_3_



I01

(sj t,u) -Hy ller aas

S= _',+r,._

"£= _,-%,

,U- _,%

12
Coordinates (4)

+

+ q_(s_-__)a_ +_a_ +__.%!a
._ 8,a sz-e

.u CSZ-_z) ILS.al )

< q/,qJ>: -rr z s ,u(s_-e) I_I _



102

(XI,X2,X3) - GronwallWs Coordinates 59_60 _5)



i03

66(p, _ , _ ) - Fock's Coordinates
I

(6)
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37

(x,_ ,__)-__ coo_,.._o.
(7)

- Z )

_ , _')_

v_,v#=
ir

+
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,_qls¢l_

b
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A certain nomenclature has arisen which identifies the type

of basis set used in a variational calculation for the two-electron

atom. This nomenclature is as follows:

Hylleraas type expansion - Basis set consists of positive

integral powers of s_t_u

5"" -E m, .e,,,_">/0.

Kinoshita type expansion - Basis set consists of positive and

negative integral powers of s and u_ positive integral

powers of t

S'-z -''' ..z"" m,£,,'_ >,,O,

powers of t

Ho Mo Schwartz type - Basis set consists of positive integral

and half-integral powers of s and u, positive integral

,,_,JZj,'_7,,0.

of u and t

) _,]ZI'Y"_/O.

C. Schwartz type - Basis set consists of positive integral

and half-integral powers of s, positive integral powers
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Appendix C. Lower Bounds for Energy Eigenvalues

The traditional Rayleigh-Ritz variational principle (see

Appendix A) furnishes a convenient method of obtaining upper bounds

to the exact energy of the ground state of a system of interest_ but

lower bounds are much more difficult to obtain. Three basic

techniques have been used in calculating lower bounds for small

systems. These three techniques are

I. The Stevenson Variational Technique_

2. The Method of Intermediate Hamiltonians_

3. The Bracketing Theorem of L_wdin.

The oldest method_ the Stevenson 90_91 variational technique_

begins by a consideration of the inequality

<% (H-EoI( >,0

where

(2)

and E O and E 1 are the exact energies of the ground state and

first excited state with the same symmetry as the ground state°

is any wave function in the domain of RearrangementH of

equation (i) leads to
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.I

(3)

which is the Stevenson formula for a lower bound. Note that when

92

this becomes Weinstein's formula, and when

(4)

(Eo+E,) (5)

equation (3)becomes, upon rearrangement, Temple's formula 93.

The procedure usually followed in the use of this formula is

to pick an O_ satisfying equation (2) and then to minimize the

functional

This is repeated with various

(6)

O_ until the best lower bound is

found. Two objections with this technique are often raised

(i) E 1 or a lower bound to E 1 must be known, and (2) matrix

elements of H 2 must be calculated.

The second technique, the method of intermediate Hamiltonians,

94
is of more recent origin Generally speaking, a set of operators

H l_ is constructed such that



109

(7)

holds. Then the associated eigenvalues satisfy the sametype of

inequality

(8)

where E {I} E(_), , .-" E represent the ground state energy of

the corresponding Hamiltonians. There are several modifications

of this technique which will not be described here. Although the

results appear very good, the method has never been pushed to the

same accuracy as in upper bound calculations.

L_wdin 95'98 has recently developed a method which produces

lower bounds by a somewhat different technique. A partitioning

technique is used by means of which the Hilbert space is divided

into two subspaces one of which is a one-dimensional space associated

with a reference function. A reduced resolvent is defined as

T= ?
..... (9)

where P

to the reference function,

Hamiltonian for the system.

function"

is the projection operator for the orthogonal complement

is a variable, and H is the

T!

Lowdin then defined a "bracketing



Ii0

(IO)

J
where _ is the reference function. The bracketing function has

the property that the interval _'a_) contains at least one true

eigenvalue of H • The technique thus yields lower bounds if E

is an upper bound. The results are encouraging.

A comparison of the results obtained by the various methods

is given for the ground state of helium in Table 3.



Iii

Appendix Do Perimetric Coordinates for Four Particles
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In a recent article I_ASI_.L and KARL [1] explored the possibility of introducing

coordinates {ui} for four particles which would be similar in nature to the three-
particle perimetric coordinates introduced by PEKEaIS [2]. Their conjecture was

that these coordinates do not exist for four particles.
If the notation of RAsrI_L and I_I_L [1] is used,

where

R=BU

F z "lz_

r_ U = "It3

r_2' _u4/

(i)

and the {u_} are the coordinates sought, then the conditions on the B matrix set

(2)

forth by RASIEL and KAm, [1] can be fulfilled.
A matrix B which obeys these conditions is

i I 2 0
B= 0 0 3 i '

I O22

I 0 1 3

If this matrix is inverted to obtain the {u_} in terms of the {r's} it is found that

the {ut} do not range from zero to infinity. This introduces a contradiction since

thc {ut} were assumed to range from zero to infinity in deriving the condit_ions
which B must fulfill.

The conclusion is reached that the requirements on B, as set forth by RASIEr,

and KARL [1], are not sufficient to determine the transformation.
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If tile B matrix given by _ASIEL and KARL as an "almost" perimetric trans-

formation is i!lverted , it is again found that tile {u_} do not range from zero to

infinity.
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Appendix E. Angular Correlation in the Helium Atom



i16

Reprinted from Trig PIIvslc^t. Rgwgw, Vol. 154, No. 1, 116--117, 5 February 1967
PdntcdIn U. $. A.

Angular Correlation in the Helium Atom

RONALDJ.WHITE*

Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin
(Received 21 September 1966)

Schwartz has shown that if the wave function for the ground state of He is developed as a perturbation
series in powers of I/Z and if the first-order wave function is expanded in a series of Legendre polynomials
in the angle 0 between the tmsition vectors of the dectrons, the contribution of the Pi component to the
second-order energy behaves as 1-4for large 1.This same behavior is noted for a model atomic system.

/IE relative importance of the various angular
contributions to tile second-order energy for the

ground state of the helium atom where 1/Z provides a
natural perturbation parameter has been discussed by
Schwartz. I._ lie h_ reported that if the first-order wave
funclion is expanded in a series of Legendre polynomials
in the angle 0 between the position vectors of the elec-
trons; the contribution of the P_ component to the
second-order energy behaves as 1-4 for large 1. Lakin s
has extended the result to the total energy. This same
behavior is obtained for a model atomic system.

The model atomic system will be called the Hooke's
law atom. It has been studied previously by Kestner
and Sinanoglu 4 and, using perturbation theory, by
White and Byers Brown) In this model the electron-
nucleus interaction is assumed to be harmonic while

the electron-electron interaction remains Coulombic.

For both the actual helium atom and the I looke's law

model, the equation to be solved is

(u,- E,)_,-- - (v- E,)¢,,, O)

where Vffi 1/rl,. Writing

¢_=F¢,0 (2)

in both cases and expanding F in a Legendre series in
the angle 0 between the two electrons

F-- E f,(,,,,,)e,(cosO) (3)
i--0

reduces the problem to an infinite set of two-dimensional
equations. In both cases the equation which determines
fz is

*National Aeronautics and Space Administration Trainee
1965-66.

t C. Schwartz, Phys. Rev. 126, 1015 (1962).
s C. Schwartz, in Methods in Computational Physics, edited by

B. Alder, S. Feinbach, and M. Rotenberg (Academic Press Inc.,
New York, 1963), Vol. 2, p. 262.

a W. Lakin, J. Chem. Phsy. 45, 2954 (1965).
N. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).

s R. White and W. Byers Brown, University of Wisconsin
Theoretical Chemistry Institute Report No. WIS-TCI-II6, 1965
(unpublished).

Oln_k, s # Olnffo s O-I
,s V.s

F Jf_v_+__q a,, Or, a,, o_,

1 a_r 1(1+1)
_e

• Ort r_

(4)
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For the helium atom

¢,o=,_-_exp[- (r_+rd],

El= 5/8;

for'the Hooke's law atom

_b0= 7r"-*lzexp[-- ½(rl2+ri2)],

Et= (21,0In.

Now Et can be expanded as

E2= _-'. El(l),
1-o

where

f r< i dvldv2
E,(l)f l_o2--f .r---------, 1>0.

J r>I+l (21+1)

By changing to the variables

$= rl'_"f2 _

y= [r2--rllxm '
rl-t-ri

x= q+½)2,

one obtains the equation for J'l:

I 05 02 02 0 0 0 02
s*i- 2sy----+y=---:_+ 2y----- as=--+Osy---+X_

Os2 OsOy Oy= Oy Os Oy Oy2

4 /2y-------s--O0\ 40,--,X)(l+y=/),)']f,|(l-y,lX)t,0y 0,) .l
, 2se "2, exp[-- (2yal3X) -- (2yS/5), 2).... ]

where
(1-f/X)'n

a= 2, He

-- s, Hooke atom,

/3= 2, He

=0, Hooke atom
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(10)

(11)

E,(0 =

for He and

and where the boundary condition

0/, =0 (12)
(5) Oy v-o

must be applied to fl since it is a symmetric function
of ri, r2. If fi is expanded in inverse powers of

(6) /, = x-' 7<-,)+ x-vc -_)+..., (i 3)

Eq. (10) can be solved to give the following restilts:

(7) St-') = -- _se-' u(1 + 2y) (14)

for both the helium atom and the Hooke's law atom and

f(-2) = __sc-2v[ (__y4 + _f + _y2+ Zy+ l )

(8) --s(]y_+y'+y+_)] (1,5)

for the helium atom,

Xse-iV , , i ,_ a 2 1y-')=--_ [(--_y+_y+_f+ y+ )

-- s2(_-y_+_y+_6-)] (16)
for the Hooke's law atom.

The expansion E2(1) as a power series in X-z is

4, 'I' (;)}(9) 256 (l+½) i (/+½)* q-O (17)

E2(02 4. q+-_)' q+½)' _o (_s)

for the Hooke's law atom.

The results reported here differ from those of

Schwartz* in Eq. (15) and the second term of Eq. (17).
The similarity between the tIooke's law atom a_d

helium indicated by Eqs. (17) and (18), and by Eq.
(14), shows that the asymptotic form of fi is inde-
pendent of the nature of the electron-nucleus interaction
and depends only on the Coulombic electron-electron

repulsion. In the case of the Hookc's law atom, F c;_._._.
be obtained analytically s and is a function of r_ only.

The author would like to thank Professor W. Byers
Brown for reading and criticizing the manuscript.
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Appendix Fo A Refutation of Bartlett's Argument for Logarithmic Terms

To begin with_ the essence of Bartlett's arg ument62 will be given

in coordinates and notation more convenient than that of the original

work. Then a counter argument will be presented in the last part of

this Appendix°

f! o
The Schrodlnger equation for the ground state of the two-electro_

atom in Z-reduced units may be written as

(1)

where

(2)

l

,__ _.. ) (3)

(. ' }

and where the coordinates are those of Fock (see Appendix B)o As

is pointed out in Appendix G the operator _ possesses an

orthonormal set of eigenfunctions_ _ o

If _ is expanded in terms of these eigenfunctions_ which

form a complete set in the variables _
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(5)

and this form substituted into equation (i)_ the result is

Multiplication of this equation by _amj_ and integration over all

angles leads to the following set of ordinary differential equations

for _.,_

n_ = O, I,?.).-..

= o, I,...>z,@
(7)

where

(8)

(See Appendix G for a definition of the _/_I_" )
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and

Bartlett then introduced as a new _dependentvariable

(I0)

which satisfies the following equation

The definition

"P,,,,,,_=__4F,,,,,,_ (12)

converts this coupled second order ordinary differential equation

into the set of coupled first order _dinary differential equations

.3

(13a)
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/

(i3 )

wh er e

q

and where the prime on the sums mean the terms with n=m, l=k

are to be omitted.

Bartlett then appealed to the work of Pierce 96 to get a

solution to this set of coupled equations. Pierce's work only

concerned a finite set of coupled equations_ not an infinite set

such as this one and Bartlett suggests that solutions of this

infinite problem could be found as the limit of a finite system.

Actually the error made is more basic than this. Rather than go

through the rather lengthy procedure that Bartlett applied to this

set of equations_ the same technique will be applied to a much

simpler equation whose complete solution is known. It will then

be obvious that the technique Bartlett used fails_ even in this

simple case, to reproduce the true solutions. The failure in the

more complicated case then follows.
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Consider the simple second order ordinary differential equation

The general solution of this equation is

(14)

Nowlet

(15)

The second order equation given by equation (14) is then equivalent

to the simultaneous first order equations

(16a)

The technique which Bartlett used consists in

(16b)

i. Assuming
O0

(17)
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2. Solving the equations

(18a)

d..q_ - _,,_-I m:2,3, (18b)

(_ (18c)

_ .......: z_.. "_',,-I ,_:-%%%...d X Xz '

success ive ly.

In a more general case than equation (16) the method is easily

Suppose the equation tocharacterized by a matrix representation.

be solved is

£_7:AT (19)

where _ is a column vector of n unknowns and A is an n x n

matrix of known coefficients. Partit$on A into two parts

A--

where

(20)

is an n x n diagonal matrix and _ is an n x n
o

matrix with zero diagonal. Assume
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o_

-- 4-I "

where the _ are again n x i column vectors_ and solve

equation (19) by the recursive scheme

(21)

(22)

with

w D •

Carrying out seven iterations of the above scheme leads to

the result (See equation (17))

$

7
(23)

The logarithmic terms that have appeared in this solution

should not "really" be there in the sense that the solution_

equation (15)_ does not possess this type of singularity. Of

course_ the logarithmic terms generated by this technique may be

"trying" to converge to the true solution when written as
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X

However_ it's clear that the infinite sum_ equation (17)_ would

at least have to be summed to yield the correct form of the solution.

Using this same technique on the infinite set of equations_

equation (13)_ Bartlett concluded that the solution contains

logarithmic terms in _ That this conclusion of Bartlett's

is invalid is clear.
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Appendix G. The Properties of _

The operator _ is the Laplacian on the four-dimensional

sphere66. In general it is defined as

0z (1)

For this problem_ a physical meaning is attached only to solutions

independent of the angle

The eigenfunctions of the operator

97
spherical harmonics and are well known

Q_ may be called hyper-

The equation

(2)

possesses solutions that are finite_ single-valued and continuous

everywhere on the four-dimensional unit sphere ( O _ _-_ _

O _ _ _'_---_ O g. _ L _'_" ) only if _ takes the values

_= - _n Co_ +_ j (3)

where

_= O_ l;l j. ,.
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To every integral value of n there correspond n + i eigen-

functions independent of _ These functions may be written
!

where __ is a Legendre polynomial and _t1_i_ . is a Gegenbauer

polynomial that may be represented either in the form of an integral

or else in the form of a derivative

where

(6)

For a given n, _._ takes the values

2j-o-j/V . (8)

The functions _'/_llp. are normalized in the following way

(9)
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The following special formula holds

The

TT ,o [&)- .

a
• (1o)

_w_ are an orthonormal set in the following sense

(11)

where the (2/V1m/M_ are the Dirac delta functions.

The following is a list of the first few hyperspherlcal

harmonic s.

0 _0 - )
(12)

(13)

) (14)
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(15)

(16)

(17)
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Appendix H - Boundary Condition Due to Hermiticity of the Kinetic

Energy in Hylleraas Coordinates

As an illu_ration of the technique used to find appropriate

boundary conditions on wave functions when using coordinates which

do not have independent ranges a detailed study _ madehere of the

s, tj u system.

Since the domain is determined by the kinetic energy alone64,

when the potential is coulombic_ the requirement of hermiticity

of the hamiltonian leads to the relation

(i)

for all _ and _ in the domain, _0 , of the hamiltonian.

The vanishing of the surface terms produced when the left hand

side of (I) is integrated by parts to produce the right hand side

corresponds to the vanishing of the bilinear concomitant or conjunct

of _ and _ on the bounding surfaces of the coordinate system.

form of _i_ _" and of the integrationAppendix B gives the

over all space to be used when employing the coordinates s,t,u,
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a_ (s___

+

+ ?-sC_-_ _) a_
6_a.s

(2)

(3)

In what follows all functions will be taken to be real and

since the ground state is of interest here all functions will be

assumed to be even in the variable t . The factor 2_ 2 in front

of the integrals will be ignored since it has no function in this

type of analysis. Write equation (2) as

(4)
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where

(5a)

_: __!__c_-_ _)
___ _5_ (5b)

s_-e o_+3 ) (5c)

P_: z_Cs_-_ _)
(5d)

and

(5e)
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Consider the term

(6)

Integrate by parts once

(7)

and then a second time

, - o,._k

(8)

Repeat this for P2 P5 :

_[(s_-_)_l&

(9)
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(11)

(12)

(14)
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(15)

- z__ + -e(s__,_,)_a,_•

- 2._-__ ____J, (16)



136

(17)

a

a_as
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Now add equations (8)_ (ii), (13), (16) and (18) to get

ju

L

+ C
6÷ ,_e/_/

(19)
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This maybe put in a more symmetrical form by observing that

the starting point could have been the right side of equation (I)

instead of the left side. This would have merely changed the roles

of _ and _ Adding the two forms yields

(20)



139

Delta functions may now be inserted to denote the boundary

terms to give

<_,t_+_)_)-_t_+_;)£_>

+ sc_-_J (_-

@

(21)
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Under the assumption that _ and _ are even in t _ the

last term vanishes if there are no negative powers of t (which are

excluded by square-integrability)o The second to last term vanishes

if _ and _ behave properly at _--_ as they must if they are

square-integrableo This leaves two terms_ one on the surface s = u

and the other on the surface u = t These must vanish for

and _ to belong to O_ , the domain of the hamiltonian_ This

requires

7A--_$
cs- )/e ( a_ _a.e

(22)

and
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(23)

Necessary requirements that any wave function must saLisfy

are that the above be true for _ = wave function considered,

= somefunction knownto be in _ . This requirement

becomessufficient only with _ being any arbitrary function in

_6 ' A class of functions in _b is given by

(_0 (24)

since this is equivalent to a subspace of the Hermite orthogonal

functions 64 Using this for _ in (22) and (23) leads to
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(25)

As stated before_ equations (25) and (26) certainly must hold

for any acceptable _ _ but these equations are not sufficient

since _ is not the most general type of function in
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Appendix I. The Difference Between Formal Solutions and Actual

Solutions

Since there may be some confusion as to the meaning of the

statement that a certain function is a formal solution to an

equation but not an actual solution_ this appendix will present

a simple example of a formal solution in the hopes of some

clarification.

Consider the equation for _,
- !

OH0- : e,*o (1)

where"

r,Or,2 N _ /

l |

6°= - I,

(2)

(3)

- _.) (4)

_| is some constant and _ and _ were defined by equation

(III.ii). Immediately one would say this equation has a solution

only for _|_0 To show this multiply both sides of

equation (I) by _ and integrate over all space. This leads to
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the conclusion

=

-- 0 (4)

since HO-- _: 0

But the function

is hermitian and ( -o,

(5)

satisfies the equation in the sense that if the operations on the

equation (i) are performed on _| given by (5)
left-side of

the right side is produced almost everywhere (the exception being

the origin). _ given by equation (5) is only a formal solution

of equation (I) by virtue of the fact that _ does not belong

I

to the domain _ 0 on which H is hermitian.

The requirement that the kinetic energy be hermitian leads_

in coordinates rl_r2_@ , to the requirement

- o _n a--f, "
(6)
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Let

Take _. _(--_') which is certainly in the domain _,

_-_ _ given by equation (5). Then

which is zero only for _ _--O Thus a formal solution of an

equation is one which yields an identity upon substitution into the

equation, but which does not satisfy the boundary conditions

associated with the particular problem.

In this respect it is worth noting that for the ground state

of helium, no formal solution exists which contains only positive

powers of the Hylleraas coordinates s_t,u due to an inconsistency

which arises. A formal solution does exist for this equation if

only positive powers of the variable _ =_ are used, but

no actual solution of the equation exists which is of this form

due to an inability of this type of solution to satisfy certain

boundary conditions.
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IV

Appendix J. Analytic Power Series Solution of the Schrodinger

Equation for the Helium Atom.

l!

Integral Series Solution of the Schrodinger

Equation for the Helium Atom.

Erratum for Above.
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ANALYTIC POWER-SERIES SOLUTION OF THE SCHR(_DINGER EQUATION

FOR THE HELIUM ATOM*

W. Byers Brown and Ronald J. White
Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin

(Received 27 April 1967)

The object of this Letter is to report the dis-

covery of analytic solutions of the SchrSding-
er equation for the two-electron atom. In this

preliminary communication we confine atten-

tion to the nonrelativistic SchrSdinger equation L

for a fixed nucleus of atomic number Z, and

to the simplest S states (singlets or triplets)
of the atom.

The Schr_klinger equation in Z-reduced units

(energy unit = Z 2 Hartree units, length unit = g

Bohr radii) is

(J£o+ Xrt,-L-E)_ = O_ (1)

where X = Z -L and

=-½(v,Z+v,')-r a-_-r,-k (2)

For S states the spatial wave function _ depends

0nly on three variables which we take to be

rL, r2, and rt, , the interparticle distances.
When operating on functions of these variables,

the unperturbed Hamiltonian can be written

= ,_r a' .!A_+___ a__+ , a

where

1Fa 2 2 0 a' 2 ]

----2_+ a-'_'IJ-rl l-rl i,c_lzrl ----+Z-£-i_,+ - 14)r t Or a ar I

and

=i(ra*-r'_) _r I r, ar '

4 _r I 8r a r 2
(5)

We assume a solution in the form of a pow-

er series in r_, starting with the arbitrary

power e:
oo

(_+n ,

_= _[_r12 _On_rl, r2), (6)
n=0

with coefficients q_n which are functions of r z

and r_ to be determined. This is a somewhat
more general form than that proposed by Hyl-

leraas 2 or by Kinoshita, s In spirit it is sim-

ilar to the approach of Pluvinage. 4 By substi-

tuting (6) into Eq. (1), and using the indepen-

dence of the powers of rt2 within the range (It a
-r,I, r a +r 2) to equate the coefficients to 0, we

find that we must take _ = 0. The remaining

equations then become

(:D+ l)_pt=_ _o, (7)

[_ 1 +l_On X+_(" =_.-1

+ [_(_,a-E) + (2- Z)_'] _o _2 (s)

for n = 2, 3,.... Hence if _oo(rt, ru) is known,

all the higher functions _on can be obtained it-
eratively by inverting the operators on the lefto

hand sides of Eqs. (7) and (8). Further, since

_) is a first-order partial differential operator,

the inversion can be carried out analytically

by a single integration.

The key problem at this point is the form

of the starting function _o. When the coupling
parameter _ goes to 0, _ approaches the cor-

,DZ514 1-2
1037
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responding eigenfunction _bo of the unperturbed

Hamiltonian satisfying (_o-Eo)_o = 0, whose

form is known explicitly. If we limit discus-

sion to the simplest S states, which correlate

with the singly excited nondegenerate unper-

turbed configuration (ls)(ns), then 5 ¢o = $o(rx, rz)"

Hence when _- 0, _0o- ¢o and all the other _0n
vanish. In the absence of further information

about _oo, it seems likely that we can take _oo

= _o for all _ (ignoring a normalization constant
depending on _). This result may be proved

by a perturbation analysis in powers of _, which

is known to be valid if _ is small enough. 6 The

first-order treatment, 7 which led to the pres-

ent work, shows that the only term independent

of rx2 in the first-order wavefunction is some

multiple of $o; the same is true for the high-
er order wavefunctions. Therefore, provid-

ed the perturbation series converges for the

value of _(= Z -x) of interest, s we can take _oo

To carry out the integrations, Eqs. (7) and

(8) are most naturally written in terms of co-
ordinates introduced by Gronwall ° and Fock, t°

x=rt2+ra 2andy=rx2-r: 2, so thatD=ya/_}y,
:D'= a/ax. Integrating the first two equations

with respect to y, we get

1 l

_ot :-_x f_ Oo(X , oty)dot, (9)

- ! I 2 1/2
_- .f_[_ (1-.) + (Eo-_)."2],o(X, .y)d., (tO)

where a is a dummy integration variable. In

terms of the Hylleraas variables s =rt+r 2 and
t =rx-r2, _ox(s, t) for the ground state (_bo= _-le-S)

takes the form

1 _t z x t, 2
_o,ffi_XOo-_-_sf_(1-#)* exp[-(s +Otu)*t*]dO, (11)

and _o2 is given by a similar type of expression.
The next member _os can also be reduced to

a single integral over _o and its derivatives,

and this is probably true for all the higher _on.

The functions _On(S, t) may be expanded in pow-
ers of t u, and most terms are then found to

involve inverse powers of s. The possibility

of a formal solution of the Hylleraas type, 2

provided inverse powers of s are included,

was pointed out by Kinoshita. s There are no

signs of logarithmic terms '°-xa in x or s in

the early members, in agreement with the con-

clusion of Kinoshitaxs; nor of fractional pow-

ers _4 of s in the t2 expansions. Further details

will be given in a subsequent paper.

The above techniques also yield analytic so-

lutions of the SchrSdinger equations for the

two-electron atom in the presence of a uniform

electric field, and for the two-electron diatom-

ic molecule, hydrogen, x5 The applications to

arbitrary states of the two-electron atom and

to the general three-body problem are being

'considered• It is interesting to note that in

the case of the lithium atom, where interpar-

ticle coordinates can also be used, the obvi*

ous generalization of Eq. (6) to a triply infinite

power series in rx2, r m, and rsx leads to an

inconsistency (of order _z) if only positive pow-
ers are allowed.

The practical weakness of the power-series

solution (6) is that it almost certainly converg-

es slowly. A more powerful approach leading

to a more rapidly convergent analytic solution

is proposed in the following Letter. _

We are grateful to Dr. Saul Epstein io, dis-

cussions and helpful comments.

*This research was supported by the National A,rce

nautics and Space Administration, Grant No. NsC _275 -

62.
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INTEGRAL SERIES SOLUTION OF THE SCHRODINGER EQUATION FOR THE HELIUM ATOM*

W. Byers Brown and Ronald J. White

Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin
(Received 27 April 1967)

In the preceding Letter,* a method for obtain-

ing analytic solutions of the nonrelativistic

Schr_ktinger equation for the two-electron atom
of infinite nuclear maaJ was delertbed. The

solution for the spatial wave function _(r,, ra,

rxa) of the simplest type of S state can be writ-

ten in the form of an infinite power series in

the interelectron distance ris ,

eo

¢ =W_ 0 =n_= Orl2nWn¢O"
(1)

In this equation _o(r, r=) is the corresponding

eigenfunction of the unperturbed Hamiltonian

in which the electron repulsion term is ab-

sent, and the ",vn are integrod_ferenttal oper-
a_ors satisfying three-term recursion relations,

which depend implicitly on the energy E. The

eigenvalue can be found by multiplying the SchriS-

dinger equation (3£0+ V)¢-E¢ by ¢o and lntegrat-
h-ig to obtain

E =Eo+(Co,V_b)l(¢o,_), (2)

and then solving this implicit equation for E

iteratively.

The power series solution (1) has the theo-

retical advantage of being almost certainly

uniformly convergent, as compared with the

variational forms of Hylleraas= or Pekeris,'

which are only convergent in the mean. How-

ever, it suffers from the practical disadvan-

tage of almost certainly converging slowly

for most configurations of the electrons. It

is therefore necessary to sum at least some

of the terms to obtain a potentially useful solu-

tion. The purpose of the present Letter is to

describe an alternative approach which achieves

such a summation implicitly, and which avoids

the assumption of a power series form. In

this preliminary communication, we shall mere-

ly sketch the method without attempt at rigor. ,
l

We partition 4 the Hamiltonian for the two-

electron atom with atomic number Z into s _£=_'
+A where, in Z-reduced atomic units (ener-

gy untt=Z' Bartree, lengt2_ unit -Z Bohr),

_, = 1 F 8_ 2 0 0_ 2 0 3
2 [Sr,' r, Or, or,' r, er, J

-%-t-r,-* +Xr,,-*, (3)

_. 0 +2(1+D)+2 r D'] 0

with k =Z -t and

The Schrtklinger equation (_-E)_ = 0 may then
be written in the form

A_=(E-_c,)_. (6)

Let A-* denote the inverse (Green's operator)

of A in the subspace complementary to that

of the functions _0 satisfying the homogeneous

equation A_0 ffi0. Then Eq. (6) can be rewrit-

ten as the integral-type equation

= _o + A-*(E-_C')_, (7)

where _0o is the appropriate solution of Aq_ = O.

Clearly, as _ - O, CPo- _o, and a perturbation

analysis I proves that we can take _oo = _o. In

contrast to the reduced resolvent (Eo--J£o) -t,

the inverse A -t can be realized explicitly as

a double integral, by using the theory of char-

acteristics of partial differential equations?

Thus, when operating on a function of _e co-

ordinates x = r,: + ra a, y = r,a-ra a, and u = r,2 ,

the inhomogeneous part may be written in the
form

I | * _ tin I 1/$

A-_f_,y,u) =--_u _ _ a tf_-u (1-ot)O, yot, u(at,B) )dadO, (8)

where a and B are dummy integration variables.

Assuming convergence, the solution of Eq. (7) can be written in a formally closed, wave operator

DZ515 1-2 1039
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form

=[1-A-'_r-_e)]-',o

={i-[1-^-'(_-_C')]-'A-'V},o

• ='#_o, (9)

where V=_rt2 -t. In practice, ¢ has to be ex-

panded as the infinite series

= _o-A -t V¢o-A-t(E-_C')A -t V¢o-. • • , (10)

where each term can be realized as a definite

integral. By expanding each term in powers

of r12 we recover the power series form (1).

The eigenvalue can be found by substituting

(10) into Eq. (2) and solving iterativeiy 7 for E.

The crucial practical question is: How rap-

idly does the integral series (10) converge ?

The only information on this point available

at present is for the Hooke's law model atom,8, °

in which the electrons are attracted to the nu-

cleus by a parabolic potential well, but repel

each other Coulomblcally. In this case the

terms of Eq. (10) converge at least as rapid-

ly as the successive orders c f Rayleigh-SchrS°

dinger perturbation theory in powers of 4.

If this is also true for the actual two-electron

atom it is highly satisfactory: The ground-

state eigenvalue of helium is given to within

2 parts in 106 by the first six terms of the per-

turbation series, te,n

The A -i technique can also be applied to the

Schr_dinger equation for the two-electron di-.

atomic molecule, hydrogen, t2 It is hoped it

may be useful in the direct nonvariational so°

lution of the pair equations of the Bethe-Gold-

stone type for many-electron atoms and dia-

tomic molecules. Computations are in prog-

ress to find how rapidly Eq. (10) converges.

In the event that convergence is too slow, it

may be necessary to consider the series ob-

tained by inverting A + V-L, where L is a num-

ber. This also appears to be possible explic-

itly, Is but is considerably more complicated
than the A -t method outlined above.
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Erratum

This article is taken from Phys. Rev.

Letters 18_ 1178 (1967).

ANALYTIC POWER SERIES SOLUTION OF THE

SCHRODINGER EQUATION FOR THE HELIUM

ATOM and INTEGRAL SERIES SOLUTION OF

THE SCHRODINGER EQUATION. W. Byers

Brown and R. J. White [Phys. Rev. Letters 18__,
1037, 1039 (1967)].

The analytic solutions proposed in our Letters

can be expanded as power series x t/= = (rt 2+r==) =/=.
Some years ago Bartlett _ and more recently
Fock = proved that solutions of this form do not

exist, because they fail to satisfy the bound-

ary conditions required of functions belonging to
• the domain in which the Hamiltonian 3C is self-

adjoint. The error in our treatment, which led

to us the conclusion that ¢Po=¢o, was to apply Ka-

to's theorem s to a function not belonging to the
domain of 3C.

The form for _bproposed by Fock 2 can be ex-

pressed as a power series 4 in r,=, as in Eq. (6)
of our first Letter. To complete our treatment

we have therefore to determine ¢Po(r_, r=) so that
satisfies the proper boundary conditions. The

work of Bartlett" and Fock 2 shows that the cor-

rect ¢po contains terms logarithmic in x.
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2V. A. Fock, Izv. Akad. Nauk SSSR, Ser. Fiz. 18,
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Table I

Selected Values of the Non-relativistic Ground State Energy of

the Helium Atom (Hartrees). Direct r.. methods
zj

Number of terms -E Comments

12
6 2.903 24 Hylleraas type

3 2.903 265 exponential dependence on r

32
i0 2.903 639 H.M. Schwartz type

105
20 2.903 718 Hylleraas type

34
24 2.903 721 5 log terms

71
31 2.903 721 59 H.M. Schwartz type

36
39 2.903 722 5 Kinoshita type

25
80 2.903 723 7 Kinoshita type

67
42 2.903 724 21 Kinoshita type

33
164 2.903 724 361 6 C. Schwartz type

38
1078 2.903 724 375 Pekeris expansion

189 2.903 724 377 032 6 Log terms and half-integral

powers 3

104

12
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Table 2

Selected Value_of the Non-relativistic Ground State Energy of the

Helium Atom (Hartrees). Multi-configurational Expansion.

Number of terms -E Comments

ii 2.861 680

6 2.877 995

21 2.878 970

i20 2. 903 22 i

680 2.903 442 635

Hartree-Fock 17

106
DODS

S limit 107

(_= 0 terms only in

PL expansion)

23
Natural Orbital type

Incomplete minimization 108
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Table 3

Lower Bounds to the Non-relativistic Energy of the is 2

of Helium (Hartrees).

IS State

Number of

Parameters -EL Technique

39 2. 911 006

I0 2. 910 16

I0 2.90_ 9

i0 2. 905 92

18 2. 905 496

18 2. 903 9

39 2. 903 877 7

80 2.903 746 7

1078 2.903 724 375

Weinstein Method 99

Stevenson Method 90

Intermediate Hamiltonian I00

95
Bracketing Technique

Temple Method I01

27
Bracketing Technique

Temple Method 94

Modified Stevenson Method 25

Temple Method 26
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_0

E3

_4

_5

_6

E i0

E ii

E 13

14

15

_= 16

E 17

_19

20

Table 4

-I
Energy Coefficients in Z Perturbation Expansion for the

Ground State of the Two-Electron Atom (Hartrees).

Hylleraasl3 Hylleraas_ Scherr_- Midtda147

Midtda134 Knight 50

-i.

0.625

-0.157 44

-I. _ -i.

0. 625 0. 625

-0.157 657 -0.157 666 405

-0.008 535 0.008 698 991

-0.000 34 -0.000 888 587

-0.000 82 -0.001 036 372

-0.002 44 -0.000 612 917

-0.000 372 187

-0.000 242 872

-0.000 165 651

-0.000 116 157

-0.000 083 281

-0.000 060 866

-0.000 045 213

-I.

0. 625

-0.157 666 428

0.008 699 029

-0.000 888 705

-0.001 036 374

-0.000 612 932

-0.000 372 184

-0.000 242 874

-0.000 165 662

-0.000 116 179

-0.000 083 302

-0.000 060 881

-0.000 045 232

-0.000 034 080

-0.000 025 993

-0.000 020 034

-0.000 015 586

-0.000 012 226

-0.000 009 661

-0.000 007 686

-0.000 006 152
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Table 5

Energy Coefficients for the Ground State of Helium in a Perturbation

Expansion with the Hartree-Fock WaveFunction as the

Zeroth-Order Function (Hartrees).

56
Order Energy

E +_ -2.861 67
0 I

_:'2 -0.037 25

_='3 -0.003 77

-0.000 85
4

_5 -0.000 16
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Table 6

The Contributions of the Various Partial Wavesto the Second
-i

Order Energy (in Z Perturbation Theory) of the

Ground State of Helium (Hartrees).

0

I

2

3

4

5

6

7

8

9

I0

ii

56 102
Byron and Joachain _cherr and Knight

+0.125 334

+0.026 495

0.003 906

0.001 077

0.000 405

0.000183

0.000 094

0.000 053

0.000 032

0.000 021

0.000 014

0.000 042

0.125 331 98

0.026 446 09

0.003 612 37

Schwartz103

0. 125 27

Oo026 3

0. 003 4

0. 000 68

0. 000 09
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-i
Energy Coefficients in Z

Hooke Atom

C0 3

O.797 88
1

-0. 077 891
2

O. 011 253
3

_4 -0.001 148 9

E5 0.000 001 268

_6 0.000 026 767

-0.000 004 655
7

-0.000 000 079
8

_9 0.000 000 192

_i0 -0.000 000 034

Table 7

Expansion for the Models Studied (hartrees)

Delta Atom Actual Atom 47

-i -i

0.5 0.625

-0.162 79 -0.157 66

0.013 989 0.008 699 0

-0.000 888 71

-0.001 036 3

-0.000 612 93

-0.000 372 18

-0.000 242 87

-0.000 165 66

-0.000 116 18

_' corr
2 -0. 049 703

corr 0.093 69
3

-0.079 46

0.013 989

-0.046 663

0.009 753 9
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